Heat exchanger calculations could be made for the required heat transfer area, or the rate of heat transfer for a heat exchanger of given area. A value is needed for the overall heat transfer coefficient for the given heat exchanger, fluids, and temperatures. Suying Zhao, Zhiqiang Li, Yi Liu, Liang'en Wang. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. ΔP = Pressure drop through the exchanger, per side (Pa) ΔP channel = Pressure drop through the exchanger channels, in between each plate (Pa) ΔP collector = Pressure drop in the inlet/outlet ports of the heat exchanger (Pa). These metrics are regularly updated to reflect usage leading up to the last few days. THin and THout are the inlet and outlet temperatures of the hot fluid and TCin and TCout are the inlet and outlet temperatures of the cold fluid. Heat exchanger calculations with the heat exchanger design equation require a value for the heat transfer rate, Q, which can be calculated from the known flow rate of one of the fluids, its heat capacity, and the required temperature change. The rating program is shown schematically in Figure 4.1. Heat exchanger tube side pressure drop calculation. The pressure drop calculated for double pipe heat exchangers is that for the flow inside the inner pipe, including both straight pipe friction losses and minor losses due to all of the 180 degree bends. Mass transfer performance for hollow fibre modules with shell-side axial feed flow: using an engineering approach to develop a framework. In lieu of an abstract, this is the article's first page. Investigation on shell side performance in half-cylindrical desuperheating zone of ladder type helical baffle heat exchangers. Each of those parameters will now be discussed briefly. The heat exchanger design equation can be used to calculate the required heat transfer surface area for a variety of specified fluids, inlet and outlet temperatures and types and configurations of heat exchangers, including counterflow or parallel flow. Heat transfer coefficient and design margin. Citations are the number of other articles citing this article, calculated by Crossref and updated daily. https://doi.org/10.1016/j.applthermaleng.2020.115334, https://doi.org/10.1016/j.applthermaleng.2020.115307, https://doi.org/10.1016/j.applthermaleng.2020.115121, https://doi.org/10.1016/j.csite.2019.100564, https://doi.org/10.1016/j.ijheatmasstransfer.2019.118493, https://doi.org/10.1007/978-3-662-52989-8_49, https://doi.org/10.1007/978-3-662-52989-8_78, https://doi.org/10.1016/j.apenergy.2018.05.011, https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.025, https://doi.org/10.1007/978-3-319-62575-1_63, https://doi.org/10.1007/978-3-662-52991-1_49-1, https://doi.org/10.1007/978-3-662-52991-1_78-2, https://doi.org/10.1016/B978-0-08-102550-5.00001-8, https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.075, https://doi.org/10.1016/j.ijhydene.2016.10.156, https://doi.org/10.1016/j.nucengdes.2016.03.030, https://doi.org/10.1016/j.ces.2016.01.011, https://doi.org/10.1016/B978-0-12-803764-5.00003-1, https://doi.org/10.1016/B978-0-12-803764-5.00011-0, https://doi.org/10.1016/B978-0-08-094242-1.00015-2, https://doi.org/10.1080/01457630902972694, https://doi.org/10.1016/j.desal.2007.09.056, https://doi.org/10.1016/j.applthermaleng.2004.12.015, https://doi.org/10.1016/j.memsci.2004.02.042, https://doi.org/10.1016/S0375-6505(02)00031-7, https://doi.org/10.1016/S0009-2509(01)00435-3, https://doi.org/10.1205/026387602753393367, https://doi.org/10.1016/S0376-7388(01)00512-9, https://doi.org/10.1016/S1874-8635(01)80003-0, https://doi.org/10.1016/S0140-7007(99)00025-0, https://doi.org/10.1016/S0017-9310(98)00368-8, https://doi.org/10.1016/S0376-7388(98)00257-9, https://doi.org/10.1016/S0894-1777(97)10064-4, https://doi.org/10.1016/S0017-9310(97)00201-9, https://doi.org/10.1016/S0255-2701(96)04194-3, https://doi.org/10.1016/0029-5493(94)90337-9, https://doi.org/10.1016/0376-7388(92)85051-J, https://doi.org/10.1016/0255-2701(88)80013-8, https://doi.org/10.1007/978-1-349-19351-6_9, https://doi.org/10.1007/978-3-642-82522-4_2, https://doi.org/10.1007/978-3-642-82522-4_3, https://doi.org/10.1007/978-3-642-82522-4_5, https://doi.org/10.1016/0009-2509(79)85176-3, https://doi.org/10.1016/0094-4548(77)90007-8, https://doi.org/10.1016/0017-9310(76)90181-2, https://doi.org/10.1007/978-1-349-15605-4_9, https://doi.org/10.1007/978-3-662-28617-3_3, https://doi.org/10.1007/978-3-662-38065-9_3, https://doi.org/10.1016/B978-1-4831-9956-6.50007-7, https://doi.org/10.1016/0017-9310(63)90037-1, https://doi.org/10.1007/978-3-662-38155-7_9, https://doi.org/10.1243/PIME_PROC_1961_175_076_02, https://doi.org/10.1007/978-3-7091-4755-9_3, https://doi.org/10.1007/978-3-7091-7852-2_3.